
Elementary Concepts of  the Material World 2

Elementary Concepts of the Material World
2

Aleksandar Vukelja
aleksandar@masstheory.org

http://www.masstheory.org

September 2010

1

mailto:aleksandar@masstheory.org
http://www.masstheory.org/


Elementary Concepts of  the Material World 2

LEGAL:
This work is released in public domain.

Translated to English from original in Serbian
“OSNOVNE OSOBINE SVETA 2”

2



Elementary Concepts of  the Material World 2

2.1. Theorem of Asynchronous Interaction

Following the field definitions 1.3 and 1.4, besides the theorem of mass, we can draw the theorem of 
asynchronous interaction between fields in accelerated motion1.

Theorem 2.1. Field in accelerated motion affects other fields with forces different from those to 
which it is exposed itself.

Proof: Let us examine two fields q1  and q2  on fig.1. The fields are still on fig.1a.

From a starting moment the central point of field q1  is being accelerated in the given 
direction (fig.1b) until velocity v  is reached. During entire period of acceleration we 
have the following state:

The central point and parts of field q1  are being accelerated and they travel a certain 
distance, while at the same time peripheral parts of the field have not even moved since 
information that acceleration began has not reached them (outside dotted circle field q1  
is still).

Since information of change in motion travels at finite speed (imposed by definition 
1.4), the field q1  at the position of the center of field q2  has not yet changed and is the 
same as before motion began. Until arrival of information to q2 , force with which the 
field q1  is affecting the field q2  is the same as before the motion began.

At the same time, field q1  is occupying position at a new distance from q2 . Based on 
changed distance, field q1  is exposed to different force exerted by q2 , compared with 
the initial conditions on fig.1a.

Based on this on fig.1b we have F 12≠ F21  and also F 12≠F21  for the duration of event. 
n

Figure 1.  a) We have two static fields equally affecting one another. b) During acceleration of the field q1 , it is 
continually moving into an area in which strength of the field q2  is different, while at the same time the field q2  does 
not know that change has occurred, and is itself exposed to the unchanged force from fig.1a until information of change 
reaches it.

1 Theorem of Asynchronous  Interaction proves that Third Newton's Law of Motion is not applicable in real time.
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2.2. Particle Interactions in Accelerated Motion

Let us analyze interaction of particles at fig.1b. Prior to arrival of information of change we have:

F 12=k
q1 q2

r2 (2.2.1)

Particle q1  is at distance d , at position where field of particle q2  has not changed. Accordingly, 
particle q1  is affected by force which now corresponds with distance d . Therefore we also have:

F 21=k
q1 q2

d 2 (2.2.2)

Expressions (2.2.1) and (2.2.2) are valid for the entire period starting with initial change in motion, 
and up to the moment of arrival of information of this event to the second particle. This means that in 
this time frame forces F 12  and F 21  are not equal.

Distance d  can be expressed using other variables from fig.1b,

d 2=r 2a2−2a r cosφ (2.2.3)

In moment t  immediately prior to the arrival of information to q2  we have r=ct and a=vt . 
This gives:

1
d 2 = 1

r2
c2

c2v2−2cv cosφ
(2.2.4)

or written differently:

1
d 2 = 1

r2  1
r 2

−v22vc cosφ
c2v 2−2vc cosφ

(2.2.5)

Now expression (2.2.2) can be rewritten using (2.2.5), which gives:

F 21=k
q1 q2

r2  k
q1 q2

r2
−v22 vccos

c2v2−2vc cos
(2.2.6)

In case that q1  and q2  are electrical charges, the first addend in (2.2.6) is electrostatic, and second 
addend is magnetic force.

In case that k  is gravity constant while q1  and q2  are body masses, the second addend is dynamic 
component of gravity which has been unknown until now, and which is fully analogous with magnetic 
force in case of electricity.
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2.2.1. Magnetic Effects of Conductor With Current

Starting with expression (2.2.6) we will derive expression which describes magnetic interaction of two 
conductors with current. In order to describe a system consisting of large number of particles, we will 
consider v2  in (2.2.6) to be mean square speed of directional motion of electrical charges within the 
conductor. This comes as consequence of the fact that uniformity and constancy of motion of a large 
system is not possible. In reality we always have some kind of distribution of speeds - some speeds 
turn out to be more likely than others. We will not deal with statistical analysis here, but shortly, it is 
important to remember that root from mean square speed is different from mean arithmetic speed, and 
in the following analysis we will come across both.

We will first derive an expression for magnetic interaction of an infinitely long conductor with current 
on a single charged particle.

Figure 2. Force exerted by charged particle 
on an infinitely long, straight conductor with 
current. Total vertical force is determined by 
adding together all infinitesimal forces exerted 
on each portion of the conductor which falls 
within the angle d φ .

Using fig.2 we have the following relations:

 dl=dx sin φ , dl=r d φ  and r 0=r sin φ . From here we find dx=
r0 d φ
sin2 φ

.

Next we have: dq1=1 dx , dq1=1

r 0 d φ
sin2φ

 where dq1  is charge that makes electrical current in the 

conductor at length dx , while 1  is density of this charge expressed in 
C
m .

We are looking for integral sum of second addend from (2.2.6) along entire length of the conductor. 
We have:

 dF 21 = k
dq1 dq2

r2
−v 22vc cosφ

c2v2−2vccos φ
(2.2.7)

Separately vertical and horizontal components of this force are:

dF 21y=dF21sin φ  and dF 21x=dF21 cosφ
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Using (2.2.7) and already known relations for r  and dq1 , we get:

dF 21y = k
1 dq2

r0

−v 2sin φ2 vc cosφ sin φ
c2v2−2vccos φ

d φ (2.2.8)

dF 21x = k
1 dq2

r0

−v 2cos φ2 vccos2 φ
c2v2−2 vccosφ

d φ (2.2.9)

By integrating from 0 to π we find:

F 21y=k
1 dq2

r 0
2 − c

v
ln vc

v−c  (2.2.10)

It can be shown that expression in parenthesis can be written in simpler form 2 − c
v

ln vc
v−c

= 2
3

v2

c2 , 

when v≪c . This condition is always satisfied for electric currents, and we get:

F 21y=k
1 dq2

r 0

2
3

v 2

c2 (2.2.11)

Expression (2.2.11) describes total vertical force of charged particle dq2  on an infinitely long 
conductor with current. In this expression, for obvious reasons [symmetry and superposition], point 
charge dq2  can be replaced with conductor of unit length, with static charge of density 2 , to get 
magnetic interaction of two conductors. Therefore we can write:

F 21y=k
12

r 0

2
3

v2

c2 (2.2.12)

Expression (2.2.12) describes total vertical force of a conductor with unit length, with static electrical 
charge, on an infinitely long conductor with current.

Figure 3. Two infinitely long conductors with current. Electrons are 
in motion in the directions of the arrows, while protons are static.

When electrical current flows through both conductors, we 
have the following forces, shown on the figure:

F 21y=F e e−Fe p−F p e (2.2.13)
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The minus sign denotes attractive force, and plus sign denotes repulsive force. Using (2.2.12), we 
have 

 F e e=k
12

r0

2
3
 v−u2

c2 , F e p=−k
12

r 0

2
3

v2

c2  and F pe=−k
12

r 0

2
3

u2

c2 . 

By substituting these individual forces into (2.2.13)  we get:

F 21y=−k
12

r0

4
3

vu
c2 (2.2.14)

We know that I 1=1 v , I 2=2 u , where v  and u  are mean arithmetic speeds. As we have 
mentioned in introduction, v  and u  are roots from mean square speeds, which are in correct 
proportion with the total force. Between these values there is relationship:

v2=3
2

v2 (2.2.15)

This relationship is based on Maxwell's distribution of speeds. The same goes for u2  and u2  as they 
are appropriate speeds for the other conductor. Using this, expression (2.2.14) becomes:

F 21y=−2k
12

r0

v u
c2 (2.2.16)

Knowing k= 1
40

, and using expression for current, we get the following expression for mutual 

force [per unit of length] of two conductors with current:

F 21y=−
I 1 I 2

r 0
(2.2.15)

where = 1
20 c2 . Value of this constant is 2⋅10−7 Nm

A2 .
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2.2.2. The Pioneer Anomaly

Pioneers 10 and 11, which were launched in early 1970s and are now on their way outside of the Solar 
system, have been observed to be at locations which differ by a small, but measurable distance, from 
those expected by calculations.

This is what Wikipedia article on the anomaly states: “Analysis of the radio tracking data from the 
Pioneer 10 and 11 spacecraft at distances between 20–70 AU from the Sun has consistently indicated 
the presence of a small but anomalous Doppler frequency drift. The drift can be interpreted as due to a 
constant acceleration of (8.74 ± 1.33) × 10−10 m/s2 directed towards the Sun. Although it is suspected 
that there is a systematic origin to the effect, none has been found. As a result, there is growing 
interest in the nature of this anomaly.”

We have mentioned that expression (2.2.6) will work for gravity too, as the only requirement in its 
derivation was that information propagates with finite speed, which is true for any force field.

This means that gravity has a dynamic component, which depends on the speed and angle of motion 
relative to the source of gravity. This component, using (2.2.6) is: 

F=k
q1 q2

r 2
−v22vccos

c2v2−2vc cos
(2.2.2.1)

We can write it like this:

F=k
q1 q2

r 2
−v2

c2v2−2 vc cos
 k

q1 q2

r2
2 vc cos

c2v2−2vc cos
(2.2.2.2)

The first addend is very small compared with the second, for v≪c , which is here the case. So we 
can rely on very approximate expression:

F=k
q1 q2

r 2
2 vccos

c2v2−2vc cos
(2.2.2.3)

We can simplify it further as the denominator is c2v2−2 vccos ≈ c2 , which gives us:

F=k
q1 q2

r 2 2 v
c

cos (2.2.2.4)

Acceleration alone is:

g=k M
r2 2 v

c
cos , (2.2.2.5)

where we have substituted q1=M  for mass of the Sun, q2  being the mass of the spacecraft and   is 
angle between velocity vector and position vector.
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Pioneer spacecraft coordinates which are available at one of NASA's websites, were used in a 
computer program to calculate corresponding dynamic component of gravity (2.2.2.5). This gives us 
the following information:

Distance from 
Sun 

(Pioneer 10)
[AU]

Speed
 [m/s]

Dynamic 
acceleration

 [× 10−10 m/s2]

10 17448 66.8
15 15696 20.1
20 14724 8.55
30 13679 2.65
40 13129 1.18
50 12788 0.64
60 12554 0.39
70 12386 0.26

This calculator (available for free at www.masstheory.org) is also used to calculate what would be 
equivalent constant acceleration to cause the same distance to be traveled towards the Sun. For a 
suitable range of distances, such as 10 to 70 AU we get 9.3 × 10−10 m/s2 for Pioneer 10 and 8.2 × 10−10 

m/s2, for Pioneer 11. When start of the range is too high, the effect is too small.

It should be noted that the calculator literally starts taking into account the dynamic effect beginning 
with the start distance from drop down box. Contrary to that, any experimental finding cannot exclude 
drift speed that was acquired by spacecraft prior to reaching 20 AU, or whatever the distance was 
when analysis of data started.

However most importantly, as can be seen in the table above, the magnitude of this force is correct, 
and it is indeed directed towards the Sun, as this is simply an increase in intensity over existing 
gravity force.
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